New identities involving Bernoulli and Euler polynomials

نویسندگان

  • Hao Pan
  • Zhi-Wei Sun
چکیده

Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki’s and Matiyasevich’s identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Identities Involving Bernoulli and Euler Polynomials

A class of identities satisfied by both Bernoulli and Euler polynomials is established. Recurrence relations for Bernoulli and Euler numbers are derived.

متن کامل

Derivation of identities involving some special polynomials and numbers via generating functions with applications

The current article focus on the ordinary Bernoulli, Euler and Genocchi numbers and polynomials. It introduces a new approach to obtain identities involving these special polynomials and numbers via generating functions. As an application of the new approach, an easy proof for the main result in [6] is given. Relationships between the Genocchi and the Bernoulli polynomials and numbers are obtai...

متن کامل

A new class of generalized Bernoulli polynomials and Euler polynomials

The main purpose of this paper is to introduce and investigate a new class of generalized Bernoulli polynomials and Euler polynomials based on the q-integers. The q-analogues of well-known formulas are derived. The q-analogue of the Srivastava–Pintér addition theorem is obtained. We give new identities involving q-Bernstein polynomials.

متن کامل

Some Symmetric Identities involving a Sequence of Polynomials

In this paper we establish some symmetric identities on a sequence of polynomials in an elementary way, and some known identities involving Bernoulli and Euler numbers and polynomials are obtained as particular cases.

متن کامل

Combinatorial Identities in Dual Sequences 3

In this paper we derive a general combinatorial identity in terms of polynomials with dual sequences of coefficients. Moreover, combinatorial identities involving Bernoulli and Euler polynomials are deduced. Also, various other known identities are obtained as particular cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2006